Regeneration and Remodeling of Materials

http://www.foxnews.com/story/0,2933,307739,00.html

http://cache.eb.com/eb/image?id=98328&rendTypeId=4

S.R. White, N.R. Sottos, J.S. Moore FA9550-10-1-0255

Depts. of Aerospace Engineering, Materials Science & Engineering, Chemistry
University of Illinois at Urbana-Champaign
& Beckman Institute for Advanced Science and Technology

including suggestions for reducing	uld be aware that notwithstanding ar	ion of information. Send comments a arters Services, Directorate for Infor my other provision of law, no person	mation Operations and Reports	, 1215 Jefferson Davis I	Highway, Suite 1204, Arlington	
1. REPORT DATE AUG 2012		2. REPORT TYPE		3. DATES COVE 00-00-2012	red to 00-00-2012	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Regeneration and Remodeling of Materials				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)			5d. PROJECT NUMBER			
		5e. TASK NUMBER				
		5f. WORK UNIT NUMBER				
University of Illino	rials Science & Engi	paign,Depts. of Aero	ospace	8. PERFORMING REPORT NUMBI	ORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited				
Grantees'/Contrac Microsystems Held	nd Multifunctional M tors' Meeting for Al 1 30 July - 3 August	Materials for Defens FOSR Program on I 2012 in Arlington, V Federal Rights Licen	Mechanics of Mu /A. Sponsored by	ltifunctional ?	Materials &	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 20	RESPONSIBLE PERSON	

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Program overview
- Regenerative coatings
 - acrylic system
 - surface microvalves
- Dynamic polymer
 - bi-phase system
 - regeneration experiments
- Multiscale scaffolds
- Summary

Autonomous Materials Systems Group

Regeneration & Remodeling Team

Ryan Gergely (AE)

Windy Turchyn (Chem)

Brett Krull (MatSE)

Concepts and Motivation

Regeneration and Remodeling in biology:

Tree skink lizard

Linckia starfish

Human Bone

Key Features:

- Large scale damage volume
- Repeatability and Reversibility
- Orders of magnitude change in properties
- Autonomy
- Stress activation

Benefits:

- Selective restructuring
- Response to environmental stimuli
- Reduction in parasitic weight
- Anti-aging
- Self-repair

Overview

Regeneration in biology:

Our approach: Dynamic polymers

GOAL: To develop bio-inspired composite material systems that regenerate and remodel in response to environmental stimuli.

Outline

- Program overview
- Regenerative coatings
 - acrylic system
 - surface microvalves
- Dynamic polymer
 - bi-phase system
 - regeneration experiments
- Multiscale scaffolds
- Summary

Coating Regeneration

Coating Damage Triggers Release

Delivery of Uncured Coating Vasculature Substrate

- Current healing technology targets small scale damage (cracks)
- Extensive damage is difficult to heal
- · Channel blockage is a challenge

Surface Microvalves

Valve Network Design

valve network

Outline

- Program overview
- Regenerative coatings
 - acrylic system
 - surface microvalves
- Dynamic polymer
 - bi-phase system
 - regeneration experiments
- Multiscale scaffolds
- Summary

Bi-Phase Chemical Resin

- Acylhydrazone end-functionalized PEG oligomer
- Tri-aldehyde crosslinker
- Methacrylate liquid monomer (HEMA)

Sol

- Concept: Low viscosity solution for easy delivery via microvascular networks
- Design: Consists of gelator components in liquid monomer "solvent"

Gel

- Concept: Rapid viscosity increase to a semi-solid as first transition
- •Design: Acid catalyst initiates gel formation at time, t₁
- Polymer Solid

 Deng et al. Macromolecules, 2010, 43, 1191-1194

 recovery of mechanical strength of damaged region
 - •Design: Monomer (HEMA) polymerizes at time, t₂, by initiator/promoter

Individually Tunable Chemistries

t₁ Gel Time

Controlled by acid catalyst & amount of gelators

t₂ Polymerization Time

Room Temp. Polymerization Components

- Initiator MEKP
- Promoter CoNp

(Polymerization: 0.3 wt% CoNp rs 15 v/v% acetic acid catalyst

Scaffold for Large Damage Volume

Infiltrate Scaffold

- •Small pores fill with resin due to surface tension
- •Sufficient healing agent delivery possible smaller volumes

Gel Scaffold

- •2-component bi-phase gel/polymer system
- •Gradual material deposition and solidification
- •Gel network scaffold fills large volumes
- •Subsequent polymerization and recovery of virgin properties

<u>Part A</u>				
Monomer				
Acid Catalyst				
Gel Part 1				

Dort A

Part B
Monomer
Gel Part 1
Gel Part 2

Large Damage Volume Regeneration

Damage Regeneration Setup

Damage Fill Pumping Regime

Microchannels in Specimen

3.5 mm gap (PDMS healing system)	
(F Magazinian Andrea	
	5.0 mm gap with bi-phase resin
	(F homogenization between
4.0 mm gap (PDMS healing system)	
Francisco	

Damage Filling Results

Multi-Scale Scaffold

- Concept: Larger damage volumes can be regenerated using multiple scale scaffolds
- Coarse Scaffold: Fiber bridging/pullout
- Molecular Scaffold: Gel of bi-phase material

Fiber Bridging:

Carbon Fiber Reinforced Epoxy

Short Glass Fiber Reinforced Nylon

Segregation of Damage Volume via Fiber Pullout

Specimen Geometry

Fill Testing of Bridged Region

Vertical Orientation: Vajecuear Premixed

Failure

Success

Summary

- Embedded Valve Systems
- Mitigates blockage of network for multiple healing cycles

- Autonomic delivery via pressure actuation
- Bi-phase, 2-part Resin Chemistry
- Tunable kinetics for each constituent
- Facile delivery of low viscosity, 2-part gel/resin system
- Exceeds surface tension limitations to fill large volumes

- Regeneration of composite materials
- Fiber bridging as vehicle for regenerative healing
- Combined with bi-phase system, multi-scale scaffolds

